3.291 \(\int \frac{\sqrt{x}}{a+b x^2} \, dx\)

Optimal. Leaf size=192 \[ \frac{\log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} \sqrt [4]{a} b^{3/4}}-\frac{\log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} \sqrt [4]{a} b^{3/4}}-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} \sqrt [4]{a} b^{3/4}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{\sqrt{2} \sqrt [4]{a} b^{3/4}} \]

[Out]

-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(3/4))) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[
x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(3/4)) + Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(2*Sqrt[2]
*a^(1/4)*b^(3/4)) - Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(2*Sqrt[2]*a^(1/4)*b^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.144383, antiderivative size = 192, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 7, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.467, Rules used = {329, 297, 1162, 617, 204, 1165, 628} \[ \frac{\log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} \sqrt [4]{a} b^{3/4}}-\frac{\log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} \sqrt [4]{a} b^{3/4}}-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} \sqrt [4]{a} b^{3/4}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{\sqrt{2} \sqrt [4]{a} b^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[x]/(a + b*x^2),x]

[Out]

-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(3/4))) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[
x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(3/4)) + Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(2*Sqrt[2]
*a^(1/4)*b^(3/4)) - Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(2*Sqrt[2]*a^(1/4)*b^(3/4))

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{x}}{a+b x^2} \, dx &=2 \operatorname{Subst}\left (\int \frac{x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )\\ &=-\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a}-\sqrt{b} x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )}{\sqrt{b}}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a}+\sqrt{b} x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )}{\sqrt{b}}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{x}\right )}{2 b}+\frac{\operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{x}\right )}{2 b}+\frac{\operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} \sqrt [4]{a} b^{3/4}}+\frac{\operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} \sqrt [4]{a} b^{3/4}}\\ &=\frac{\log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} \sqrt [4]{a} b^{3/4}}-\frac{\log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} \sqrt [4]{a} b^{3/4}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} \sqrt [4]{a} b^{3/4}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} \sqrt [4]{a} b^{3/4}}\\ &=-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} \sqrt [4]{a} b^{3/4}}+\frac{\tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} \sqrt [4]{a} b^{3/4}}+\frac{\log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} \sqrt [4]{a} b^{3/4}}-\frac{\log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} \sqrt [4]{a} b^{3/4}}\\ \end{align*}

Mathematica [A]  time = 0.0242538, size = 54, normalized size = 0.28 \[ \frac{a \left (\tan ^{-1}\left (\frac{a \sqrt [4]{b} \sqrt{x}}{(-a)^{5/4}}\right )+\tanh ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{-a}}\right )\right )}{(-a)^{5/4} b^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[x]/(a + b*x^2),x]

[Out]

(a*(ArcTan[(a*b^(1/4)*Sqrt[x])/(-a)^(5/4)] + ArcTanh[(b^(1/4)*Sqrt[x])/(-a)^(1/4)]))/((-a)^(5/4)*b^(3/4))

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 132, normalized size = 0.7 \begin{align*}{\frac{\sqrt{2}}{4\,b}\ln \left ({ \left ( x-\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ( x+\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+{\frac{\sqrt{2}}{2\,b}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+{\frac{\sqrt{2}}{2\,b}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)/(b*x^2+a),x)

[Out]

1/4/b/(1/b*a)^(1/4)*2^(1/2)*ln((x-(1/b*a)^(1/4)*x^(1/2)*2^(1/2)+(1/b*a)^(1/2))/(x+(1/b*a)^(1/4)*x^(1/2)*2^(1/2
)+(1/b*a)^(1/2)))+1/2/b/(1/b*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x^(1/2)+1)+1/2/b/(1/b*a)^(1/4)*2^(1
/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x^(1/2)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(b*x^2+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.35074, size = 332, normalized size = 1.73 \begin{align*} -2 \, \left (-\frac{1}{a b^{3}}\right )^{\frac{1}{4}} \arctan \left (\sqrt{-a b \sqrt{-\frac{1}{a b^{3}}} + x} b \left (-\frac{1}{a b^{3}}\right )^{\frac{1}{4}} - b \sqrt{x} \left (-\frac{1}{a b^{3}}\right )^{\frac{1}{4}}\right ) + \frac{1}{2} \, \left (-\frac{1}{a b^{3}}\right )^{\frac{1}{4}} \log \left (a b^{2} \left (-\frac{1}{a b^{3}}\right )^{\frac{3}{4}} + \sqrt{x}\right ) - \frac{1}{2} \, \left (-\frac{1}{a b^{3}}\right )^{\frac{1}{4}} \log \left (-a b^{2} \left (-\frac{1}{a b^{3}}\right )^{\frac{3}{4}} + \sqrt{x}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(b*x^2+a),x, algorithm="fricas")

[Out]

-2*(-1/(a*b^3))^(1/4)*arctan(sqrt(-a*b*sqrt(-1/(a*b^3)) + x)*b*(-1/(a*b^3))^(1/4) - b*sqrt(x)*(-1/(a*b^3))^(1/
4)) + 1/2*(-1/(a*b^3))^(1/4)*log(a*b^2*(-1/(a*b^3))^(3/4) + sqrt(x)) - 1/2*(-1/(a*b^3))^(1/4)*log(-a*b^2*(-1/(
a*b^3))^(3/4) + sqrt(x))

________________________________________________________________________________________

Sympy [A]  time = 4.46716, size = 170, normalized size = 0.89 \begin{align*} \begin{cases} \frac{\tilde{\infty }}{\sqrt{x}} & \text{for}\: a = 0 \wedge b = 0 \\\frac{2 x^{\frac{3}{2}}}{3 a} & \text{for}\: b = 0 \\- \frac{2}{b \sqrt{x}} & \text{for}\: a = 0 \\- \frac{\left (-1\right )^{\frac{3}{4}} \log{\left (- \sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2 \sqrt [4]{a} b^{2} \left (\frac{1}{b}\right )^{\frac{5}{4}}} + \frac{\left (-1\right )^{\frac{3}{4}} \log{\left (\sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2 \sqrt [4]{a} b^{2} \left (\frac{1}{b}\right )^{\frac{5}{4}}} + \frac{\left (-1\right )^{\frac{3}{4}} \operatorname{atan}{\left (\frac{\left (-1\right )^{\frac{3}{4}} \sqrt{x}}{\sqrt [4]{a} \sqrt [4]{\frac{1}{b}}} \right )}}{\sqrt [4]{a} b^{2} \left (\frac{1}{b}\right )^{\frac{5}{4}}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(1/2)/(b*x**2+a),x)

[Out]

Piecewise((zoo/sqrt(x), Eq(a, 0) & Eq(b, 0)), (2*x**(3/2)/(3*a), Eq(b, 0)), (-2/(b*sqrt(x)), Eq(a, 0)), (-(-1)
**(3/4)*log(-(-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/(2*a**(1/4)*b**2*(1/b)**(5/4)) + (-1)**(3/4)*log((-1
)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/(2*a**(1/4)*b**2*(1/b)**(5/4)) + (-1)**(3/4)*atan((-1)**(3/4)*sqrt(x
)/(a**(1/4)*(1/b)**(1/4)))/(a**(1/4)*b**2*(1/b)**(5/4)), True))

________________________________________________________________________________________

Giac [A]  time = 3.01733, size = 246, normalized size = 1.28 \begin{align*} \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{3}{4}} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} + 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{2 \, a b^{3}} + \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{3}{4}} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} - 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{2 \, a b^{3}} - \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{3}{4}} \log \left (\sqrt{2} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{4}} + x + \sqrt{\frac{a}{b}}\right )}{4 \, a b^{3}} + \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{3}{4}} \log \left (-\sqrt{2} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{4}} + x + \sqrt{\frac{a}{b}}\right )}{4 \, a b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(b*x^2+a),x, algorithm="giac")

[Out]

1/2*sqrt(2)*(a*b^3)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/(a*b^3) + 1/2*sqrt
(2)*(a*b^3)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/(a*b^3) - 1/4*sqrt(2)*(a*
b^3)^(3/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a*b^3) + 1/4*sqrt(2)*(a*b^3)^(3/4)*log(-sqrt(2)*s
qrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a*b^3)